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Hopf-Galois Theory

An extension K/k is Hopf-Galois if there is a k-Hopf algebra H and a
k-algebra homomorphism µ : H → Endk(K ) such that

µ(ab) =
∑

(h) µ(h(1)(a)µ(h(2))(b)

KH = {a ∈ K | µ(h)(a) = ǫ(h)a ∀h ∈ H} = k

µ induces I ⊗ µ : K#H
∼=→ Endk(K )
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If K/k is Galois with G = Gal(K/k) then, by linear independence of
characters, the elements of G are a k-basis for Endk(K ) whence there
exists a natural map:

H = k[G ]
µ→ Endk(K )

which induces
I ⊗ µ : K#H

∼=→ Endk(K )

For the group ring k[G ] the endomorphisms arise as linear combinations of
the automorphisms given by the elements of G .
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Hopf-Galois theory is a generalization of ordinary Galois theory in several
ways.

One can put Hopf Galois structure(s) on separable field extensions
K/k which aren’t classically Galois. e.g. Q( 3

√
2)/Q

Moreover, one can take an extension K/k which is Galois with group
G (hence Hopf-Galois for H = k[G ]) and also find other Hopf
algebras which act besides k[G ].

In this talk we will be focusing on the case where K/k is already a Galois
extension.

Both cases are covered by the Greither-Pareigis enumeration and the
formulation for the latter is as follows:
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K/k finite Galois extension with G = Gal(K/k).

G acting on itself by left translation yields an embedding

λ : G →֒ B = Perm(G )

Definition: N ≤ B is regular if N acts transitively and fixed point freely on
G .

Theorem

[3] The following are equivalent:

There is a k-Hopf algebra H such that K/k is H-Galois

There is a regular subgroup N ≤ B s.t. λ(G ) ≤ NormB (N) where N
yields H = (K [N])G .
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Short Exact Sequences

In ordinary Galois theory, if K/k is Galois with G = Gal(K/k) and G ′ ⊳ G
with KG ′

the corresponding intermediate field, then KG ′
/k is Galois with

group G/G ′. Also, of course, one has the exact sequence of groups

1 → G ′ → G → G/G ′ → 1

One wonders what an analogous formulation would look like for
Hopf-Galois structures.
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Since G ′ ⊳ G then by [2, Prop 4.14]

k → k[G ′] → k[G ] → k[G/G ′] → k

is a short exact sequence of k-Hopf algebras.

But in terms of the actions on the relevant (intermediate) fields, these are
not exactly the Hopf algebras that act to make the given field extensions
Hopf-Galois.
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If we look at the Hopf-Galois actions induced by the Galois groups G ′, G ,
and G/G ′ then the Hopf algebras are group rings

K/KG ′
is acted on by (K [ρ(G ′)])λ(G

′) ∼= KG ′
[G ′]

where ρ(G ′), λ(G ′) ≤ Perm(G ′)

K/k is acted on by (K [ρ(G )])λ(G) ∼= k[G ]

KG ′
/k is acted on by (KG ′

[ρ(G/G ′)])λ(G/G ′) ∼= k[G/G ′]

where λ(G/G ′), ρ(G/G ′) ≤ Perm(G/G ′)

The latter two Hopf algebras are defined over k but the first is not, which
is not unexpected since it is acting with respect to the ground field KG ′

.
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Since ρ(G ′) is plainly normalized by ρ(G ) and λ(G ) then (K [ρ(G ′)])λ(G) is
an ’admissible sub-algebra’ of (K [ρ(G )])λ(G) where by [1, Theorem 7.6]
(Chase and Sweedler)

(K [ρ(G ′)])λ(G
′) ∼= KG ′ ⊗ (K [ρ(G ′)])λ(G)
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Part of the simplicity of the ’classical’ case above is that the Hopf-Algebras
are group rings, which is due to the fact that λ(G ) centralizes ρ(G ) and
concordantly ρ(G ′) so that the descent data is only acting on the scalars.

For K/k Hopf-Galois under the action of HN = (K [N])λ(G) , where N is a
regular subgroup of Perm(G ) normalized by λ(G ), we would like to
consider P ⊳N, also normalized by λ(G ) and the Hopf-Galois structures (if
any) arising from P and N/P .
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Since P is normalized by N, then by Chase and Sweedler [1, Theorem 7.6],
HP = (K [P ])λ(G) is an admissible k-sub Hopf algebra of HN = (K [N])λ(G)

which fixes a subfield F , and that F ⊗ HP acts to make K/F Hopf-Galois.

Furthermore, since F is an intermediate field between K and k then
F = KG ′

for some G ′ ≤ G = Gal(K/k).

[Side Question: Is it possible to deduce G ′ in terms of P directly, in a
field independent way? After all, G ′ is embedded as a subgroup of ρ(G )
(the classical action!) in Perm(G ) and P ≤ N ≤ Perm(G ) where, for
example, one must have |G ′| = |P |. Perhaps this might de-mystify the
FTGT correspondence between subfields and sub Hopf-algebras.]

Since K/F is Galois with group G ′ and acted on by F ⊗HP then how does
it fit within the Greither-Pareigis framework?
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As observed by Crespo in [5, Prop. 8], F ⊗ HP = (K [P])λ(G
′).

That is, P is embedded as a regular subgroup of Perm(G ′) and normalized by λ(G ′).

K

G{N}

G ′ {P}

@@
@@

@@
@@

F

~~
~~
~~
~~

k

However, since N ≤ Perm(G) and P ≤ Perm(G ′) ≤ Perm(G) then P is also embedded
in Perm(G) as a semi-regular (fixed point free) subgroup. (Recall that a proper
subgroup of a regular permutation group is semi-regular.)

This parallels the relationship between λ(G ′) ≤ Perm(G ′) as a regular subgroup and
λ(G ′) ≤ Perm(G) as a semi-regular subgroup.

Indeed, there is useful (I dare say critical) information to be obtained by examining the
regularity and semi-regularity of these subgroups.
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For the ’quotient’ piece, namely the construction of a Hopf-Galois
structure on F/k corresponding to N/P , some care must be taken since,
applying Greither-Pareigis naively we might want N/P to be normalized by
λ(G/G ′) ≤ Perm(G/G ′).

However, this pre-supposes that G ′ ≤ G is actually a normal, but this need
not be the case, even though P ⊳ N.

K

G{N}

G ′ {P}

@@
@@

@@
@@

F

G/G ′ {N/P}~~
~~
~~
~~

k
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As an example, suppose G and N below correspond to ρ(G) and N embedded in
Perm(G), although here we have S24 instead of Perm(G), which actually doesn’t matter.

G = 〈(1, 2)(3, 13)(4, 8)(5, 7)(6, 9)(10, 21)(11, 20)(12, 16)(14, 18)(15, 17)(19, 24)(22, 23),

(1, 3, 9)(2, 6, 13)(4, 11, 23)(5, 19, 17)(7, 15, 24)(8, 22, 20)(10, 18, 12)(14, 21, 16),

(1, 4)(2, 7)(3, 10)(5, 12)(6, 14)(8, 16)(9, 17)(11, 19)(13, 20)(15, 22)(18, 23)(21, 24)

(1, 5)(2, 8)(3, 11)(4, 12)(6, 15)(7, 16)(9, 18)(10, 19)(13, 21)(14, 22)(17, 23)(20, 24)〉

∼= S4 regular

N = 〈(1, 6, 9, 2, 3, 13)(4, 15, 23, 7, 11, 24)(5, 22, 17, 8, 19, 20)(10, 21, 12, 14, 18, 16),

(1, 9, 3)(2, 13, 6)(4, 23, 11)(5, 17, 19)(7, 24, 15)(8, 20, 22)(10, 12, 18)(14, 16, 21),

(1, 4)(2, 7)(3, 10)(5, 12)(6, 14)(8, 16)(9, 17)(11, 19)(13, 20)(15, 22)(18, 23)(21, 24),

(1, 12)(2, 16)(3, 19)(4, 5)(6, 22)(7, 8)(9, 23)(10, 11)(13, 24)(14, 15)(17, 18)(20, 21)〉

∼= A4 × C2 regular and normalized by G

Timothy Kohl (Boston University) Short Exact Sequences of Hopf-Galois Extensions May 24, 2017 15 / 42



N has a normal subgroup P

P = 〈(1, 4)(2, 7)(3, 10)(5, 12)(6, 14)(8, 16)(9, 17)(11, 19)(13, 20)(15, 22)(18, 23)(21, 24),

(1, 5)(2, 8)(3, 11)(4, 12)(6, 15)(7, 16)(9, 18)(10, 19)(13, 21)(14, 22)(17, 23)(20, 24),

(1, 2)(3, 6)(4, 7)(5, 8)(9, 13)(10, 14)(11, 15)(12, 16)(17, 20)(18, 21)(19, 22)(23, 24)〉

∼= C2 × C2 × C2 also normalized by G

but G has no normal subgroups of order 8.

However, G has three subgroups of order 8, all isomorphic to D4, one of which must be
G ′ whose fixed field is the same as HP . The question is, which one?

We’ll return to this question shortly.
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That G ′ is not normal is not that shocking since F/k does not need to be
classically Galois in order to be Hopf-Galois. The question is whether this
affects our ability to impose a Hopf-Galois structure on F/k .

We shall begin however with the case where G ′ ⊳ G and then look beyond
to other situations.

Moreover, we shall consider the ambient symmetric groups in which these
(semi-)regular subgroups reside and their relationships with each other.
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With this diagram in mind

K

G{N}

G ′ {P}

@@
@@

@@
@@

F

G/G ′ {N/P}~~
~~
~~
~~

k

we define

[K : F ] = |G ′| = |P | = p

[F : k] = [G : G ′] = [N : P ] = m

[K : k] = |N| = |G | = mp = n

where p is not necessarily a prime (although perhaps it may be
sometimes!).
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To simplify the discussion, we shall let BX = Perm(X ) for |X | = n and
consider a regular subgroup G ≤ BX as well as a regular subgroup
N ≤ BX such that G ≤ NormBX

(N).

We shall also consider Y ⊆ X where G ′Y ≤ BY = Perm(Y ) as a regular
subgroup, which gives rise to a semi-regular G ′X ≤ BX .

As Y is the set of points on which G ′Y operates, then we have

X = X1 ∪ X2 · · · ∪ Xm

where the Xi are the orbits of the action of G ′X , where, WLOG, X1 = Y .
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This is not as mysterious as it looks.

Consider G = 〈σ〉 ∼= C12 and G ′ = 〈σ3〉 then

λ(σ) = (1, σ, σ2, . . . , σ11) ∈ Perm(G )

λ(σ3) = (1, σ3, σ6, σ9)(σ, σ4, σ7, σ10)(σ2, σ5, σ8, σ11) ∈ Perm(G )

λ(σ3) = (1, σ3, σ6, σ9) ∈ Perm(G ′)

and so X = {1, σ, . . . , σ11} = X1 ∪ X2 ∪ X3 where

X1 = Y = {1, σ3, σ6, σ9}
X2 = {σ, σ4, σ7, σ10}
X3 = {σ2, σ5, σ8, σ11}

and so λ(G ′) is a regular subgroup of Perm(Y ) and a semi-regular
subgroup of Perm(X ).
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More formally

Lemma

For G , G ′, X , and Y as above, X = X1 ∪ · · · ∪ Xm where Xi = OrbG ′
X
(xi )

for distinct x1, . . . , xm in X and Xi ∩ Xj = Ø for i 6= j and |Xi | = |G ′| and
m = [G : G ′].

Proof.

Since G ′X is a subgroup of a regular permutation group, G , then G ′X is
semi-regular, that is it acts fixed point freely. As such, for any x ∈ X , the
orbit OrbG ′

X
(x) contains |G ′X | distinct elements. And as |G ′X | divides |X |

then one may simply choose m distinct xi yielding a partition of X into
distinct orbits as in the statement of the result.
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Given this partition of X we can view G ′X as embedded diagonally in

Perm(X1)× · · · × Perm(Xm) ≤ B = Perm(X )

where the action of G ′X restricted to each Perm(Xi ) yields a regular
subgroup of that Perm(Xi ).

Moreover, given this partition of X , we can view the Xi as ’blocks’ with
respect to the action of G/G ′X .

Lemma

With G ′X ⊳ G and X partitioned as above, the quotient group G/G ′X acts
on {X1, . . . ,Xm} as a regular permutation group.
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Proof.

If G ′X = {σ1, . . . , σp} then Xi = OrbG ′
X
(xi ) = {σ1(xi ), . . . , σp(xi)} and

γσ(OrbG ′
X
(xi )) = {γσσ1(xi ), . . . , γσσp(xi)} = {γσ1(xi ), . . . , γσp(xi )}

for any γσ ∈ γG ′X . But now, since G ′X ⊳ G we have

{γσ1(xi ), . . . , γσp(xi)} = {σ′

1γ(xi ), . . . , σ
′

pγ(xi )}
= OrbG ′

X
(γ(xi ))

so the action is γG ′X (OrbG ′
X
(xi)) = OrbG ′

X
(γ(xi )).
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Proof.

This is well defined since γ(OrbG ′
X
(x)) = OrbG ′

X
(x) if and only if γ ∈ G ′X .

The reason for this is that OrbG ′
X
(γ(x)) will not contain x unless σγ is the

identity for some σ ∈ G ′X by regularity of G .

As such γ1G
′
X (OrbG ′

X
(x)) = η2G

′
X (OrbG ′

X
(x)) if and only if γ−12 γ1 ∈ G ′X .

Since G acts regularly on X itself, then given distinct xi and xj above,
there is some γ ∈ G such that γ(xi ) = xj whence γG ′X (Xi ) = Xj .

That is, G/G ′X (of order m) acts transitively on {X1, . . . ,Xm} so it must
be regular.
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One can pause to observe that G itself may be embedded as a subgroup of

(Perm(X1)× · · · × Perm(Xm))⋊ Perm({X1, . . . ,Xm}) ∼= Sp ≀ Sm

where if x ∈ Xi and τ(x) ∈ Xj then ((σ1, . . . , σm), τ)(x) = σj(τ(x)).

To see why this makes sense, start with the exact sequence
1 → G ′ → G → G/G ′ → 1 making G an extension of G ′ by G/G ′.

By the Universal Embedding Theorem of Kaloujnine and Krasner [4], if a
1 → A → B → C → 1 presents a group B as an extension of A by C then
B may be embedded in A ≀ C where A ≀ C ∼= A|C | ⋊ C with C acting by
coordinate shift on the ’base group’ A× · · · × A.

In this setting, the groups in question are embedded as subgroups of the
given larger symmetric groups by (semi)regularity. i.e.
G ′X ≀ (G/G ′X ) →֒ Sp ≀ Sm →֒ Smp
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Now, there is a parallel partitioning of X which arises due to the subgroup
P ⊳ N where N ≤ BX is regular and P is embedded as a regular subgroup
PY ≤ BY and a semi-regular subgreoup PX ≤ BX .

(i.e. just as G ′ has two forms, G ′Y ≤ BY regular, and G ′X ≤ BX

semi-regular)

As such, one has
X = X̃1 ∪ X̃2 · · · ∪ X̃m

where X̃1 = X1 = Y and X̃i = OrbPx
(x̃i ) for distinct x̃1, . . . , x̃m where

WLOG x̃1 = x1.
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The fact that G normalizes P yields an action of G on X̃i .

Proposition

The group G acts transitively on {X̃i}.

Proof.

Since G normalizes P then G acts on {X̃1, . . . , X̃m} by

γ(OrbPx
(x̃i )) = {γσ1(x̃i ), . . . , γσp(x̃i )}

= {σ′

1γ(x̃i ), . . . , σ
′

pγ(x̃i )}
= OrbPX

(γ(x̃i ))

for any γ ∈ G . And since G is a regular subgroup of BX then it acts
transitively on {x̃1, . . . , x̃m} so therefore it acts transitively on
{X̃1, . . . , X̃m}.
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What is the relationship between the two partitions of X into blocks {Xi}
and {X̃i}?

Corollary

For G ′ ⊳ G and P ⊳ N where G normalizes N and P, we have, after
re-indexing if necessary that X̃i = Xi for i ∈ {1, . . . ,m}.

Proof.

The point is that G operates transitively on {Xi} so in particular that
{Xi} = OrbG (X1) but by the proposition OrbG (X̃1) = {X̃i} but X̃1 = X1

so, set-wise, and after renumbering Xi = X̃i .
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So what happens if G ′ is not normal in G? Going back to our example earlier, there are
(for the given P) three different subgroups G ′

1,G
′
2,G

′
3 of order |P| = 8, all isomorphic to

D4 in fact, but to pinpoint which is the G ′, one looks at the orbits of each due to their
being semi-regular

G
′
1 → [1, 2, 4, 5, 7, 8, 12, 16], [3, 10, 11, 13, 19, 20, 21, 24], [6, 9, 14, 15, 17, 18, 22, 23]

G
′
2 → [1, 4, 5, 6, 12, 14, 15, 22], [2, 3, 7, 8, 23, 10, 11, 16, 19], [9, 13, 17, 18, 20, 21, 24]

G
′
3 → [1, 4, 5, 12, 13, 20, 21, 24], [2, 7, 8, 9, 16, 17, 18, 23], [3, 6, 10, 11, 14, 15, 19, 22]

And in comparison, the orbits of P are

X̃1 = [1, 2, 4, 5, 7, 8, 12, 16] X̃2 = [3, 6, 10, 11, 14, 15, 19, 22] X̃3 = [9, 13, 17, 18, 20, 21, 23, 24]

Thus, the only G ′ that has an orbit in common (containing 1) with P is G ′
1 where the

shared orbit is [1, 2, 4, 5, 7, 8, 12, 16], i.e. Y = [1, 2, 4, 5, 7, 8, 12, 16] so that
G ′

Y ≤ Perm(Y ) and PY ≤ Perm(Y ) where G ′
Y normalizes PY to give rise to a

Hopf-Galois structure on K/F .
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The contrast between

X1 = [1, 2, 4, 5, 7, 8, 12, 16] X̃1 = [1, 2, 4, 5, 7, 8, 12, 16]

X2 = [3, 10, 11, 13, 19, 20, 21, 24] X̃2 = [3, 6, 10, 11, 14, 15, 19, 22]

X3 = [6, 9, 14, 15, 17, 18, 22, 23] X̃3 = [9, 13, 17, 18, 20, 21, 23, 24]

highlights the fact that G ′ ⊳ G is necessary in order to have {Xi} = {X̃i}.

Timothy Kohl (Boston University) Short Exact Sequences of Hopf-Galois Extensions May 24, 2017 29 / 42



CURIO: It’s not clear whether this is accidental but one can choose identical right
transversals of G ′

x in G and PX in N, i.e.

G/G ′
X = N/PX (coset reps.)

= {(),

(1, 3, 9)(2, 6, 13)(4, 11, 23)(5, 19, 17)(7, 15, 24)(8, 22, 20)(12, 10, 18)(16, 14, 21)

(1, 9, 3)(2, 13, 6)(4, 23, 11)(5, 17, 19)(7, 24, 15)(8, 20, 22)(12, 18, 10)(16, 21, 14)}

The point though is that with G ′ a non-normal subgroup of G then G need not act
transitively on the {Xi} which is indeed the case here, but the N does act transitively on
{X̃i} since P ⊳ N.

X̃1 = [1, 2, 4, 5, 7, 8, 12, 16]

X̃2 = [3, 6, 10, 11, 14, 15, 19, 22]

X̃3 = [9, 13, 17, 18, 20, 21, 23, 24]

As such, G/G ′
X can be viewed as acting regularly on {X̃i} (as N/P clearly does)... even

though G/G ′
X is not a group. (or is it?)

More on this later.
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Back in the setting where G ′X ⊳ G and PX ⊳ N we have that both G/G ′X
and N/Px are regular subgroups of BX/Y = Perm({Xi}).

And since G normalizes N and PX then we consider what it means for
N/PX to be normalized by G/G ′X .

Consider γgησγ−1h ∈ (γG ′X )(ηPX )(γ
−1G ′X ) and observe that

γσ1ηπγ
−1σ2(OrbPX

(xi )) = γσ1ησ2γ
−1(OrbPX

(xi ))

= γσ1ηπ(OrbPX
(γ−1(xi )))

= γσ1η(OrbPX
(γ−1(xi )))

= γσ1(OrbPX
(ηγ−1(xi )))

= γ(OrbPX
(ηγ−1(xi)))

= OrbPX
(γηγ−1(xi )))

where the last set above is therefore γηγ−1PX (OrbPX
(xi )).
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That is
(γG ′)(ηP)(γ−1G ′) = γηγ−1P

is how G/G ′ normalizes N/P in Perm({Xi}).

One small but useful consequence of this is that eGG
′ acts trivially on

N/P .

Timothy Kohl (Boston University) Short Exact Sequences of Hopf-Galois Extensions May 24, 2017 32 / 42



So now, back to
K

G{N}

G ′ {P}

@@
@@

@@
@@

F

G/G ′ {N/P}~~
~~
~~
~~

k

we have K/k is Hopf-Galois with associated group N ≤ B = Perm(G ) so
that λ(G ) ≤ NormB (N)) where H = (K [N])λ(G) is the Hopf algebra which
acts and F ⊗ HP

∼= F ⊗ (K [P ])λ(G) ∼= (K [P ])λ(G
′) acts on K/F .

We now have HN/P = (F [N/P ])λ(G)/λ(G ′) acts on F/k to make it
Hopf-Galois since λ(G )/λ(G ′) normalizes the regular subgroup N/P , both
contained in the same ambient symmetric group.
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Moreover, one has an exact sequence of k-Hopf algebras

1 → (K [P ])λ(G) → (K [N])λ(G) → (F [N/P ])λ(G)/λ(G ′ ) → 1

where (K [P ])λ(G) ⊗ F acts on K/F and the other two terms act on K/k
and F/k respectively.

The reason this is exact is that we can rewrite the last term
(F [N/P ])λ(G)/λ(G ′) as

( (K [N/P ])λ(G
′)

︸ ︷︷ ︸

descend from K to F

)λ(G)/λ(G ′)

︸ ︷︷ ︸

descend from F to k

= (K [N/P ])λ(G)

since (K [N/P ])λ(G
′) = F [N/P ] due to λ(G ′) acting trivially on N/P as

observed earlier.
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As such, exactness is due to faithful flatness, i.e.

1 // K [P ] //

λ(G)

��

K [N] //

λ(G)

��

K [N/P ] //

λ(G)

��

1

1 // (K [P ])λ(G) // (K [N])λ(G) // (K [N/P ])λ(G)

=

(F [N/P])λ(G)/λ(G ′)

// 1
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So what if F/k is not classically Galois, i.e. G ′X is not normal in G?

In this case, F is not its own normal closure, but rather F̃ = KG ′′
where,

by basic Galois theory, G ′′ = ∩
γ∈G

gGg−1 whereby all the intermediate fields

diagrammed below are Galois, with the exception of F/k .

K

G ′′

??
??

??
??

G {N}

G ′

{P}

		

F̃

G/G ′′

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

G ′/G ′′

>>
>>

>>
>>

F

[G/G ′]← not a group
{N/P}

{{
{{
{{
{{
{{
{{
{{
{{
{

k
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On the surface, the fact that G ′ is not normal in G is not necessarily a problem in the
Greither-Pareigis framework since if F/k is to have a Hopf-Galois structure with group
N/P then the descent data would come from Gal(F̃/k) = G/G ′′.

(After all passage to the normal closure of a non-Galois extension is the principal
application of the theory in G-P to put Hopf-Galois structures on non-normal
extensions.)

This should yield a Hopf algebra (F̃ [N/P])G/G ′′

or, more specifically (F̃ [N/P])λ(G/G ′′)

where N/P is viewed as a regular subgroup of Perm((G/G ′′)/(G ′/G ′′)) ∼= Perm(G/G ′).

So some care must be taken to consider what ambient symmetric groups these groups
embedded in, and how they act on each other. (Warning! conjectures ahead)
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Can we put a Hopf-Galois structure on F/k (of type N/P) using N and P?

Maybe...
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(Yes, I know, “for example” is not proof.)

As seen in the earlier example (slide 30), the orbits of G ′X in G , namely
{Xi} are not acted on transitively by G , but the orbits {X̃i} of PX in N
are acted on transitively by G , (and of course by N and thus regularly by
N/P).

Moreover, as also seen earlier, there is a right transversal of G ′x in G which
is not only a group, but acts as a regular permutation group on {X̃i}.

As such, we should view Perm(G/G ′) as Perm({X̃i}) and, as also seen in
the example earlier, the transversal of G ′X in G is identical to that of P in
N, and so we have

“G/G ′ normalizes N/P ′′

inside the common symmetric group in which both reside.
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K
G ′′

LL
LL

LL

G {N}

G ′

{P}

��

F̃

G/G ′′

��
��
��
��
��
��

G ′/G ′′

KK
KK

KK

F

[G/G ′ ]
{N/P}ooo

oo
ooo

ooo
oo
o

k

So, getting back to HN/P = (F̃ [N/P])G/G ′′

we can view this descent path from F̃ to k

(via G/G ′′) as being done in two steps

((F̃ [N/P])G
′/G ′′

︸ ︷︷ ︸

descend from F̃ to F

)G/G ′

︸ ︷︷ ︸

descend from F to k

= (F [N/P])G/G ′

which is reasonable since G/G ′′ acts trivially on N/P so that

(F̃ [N/P])G/G ′′

= F̃G/G ′′

[N/P] = F [N/P].

Timothy Kohl (Boston University) Short Exact Sequences of Hopf-Galois Extensions May 24, 2017 40 / 42



One ’extremal’ case to treat is where G ′′ = {eG} so that F̃ = K whereby
we are back where we started, namely

K

G{N}

G ′ {P}

@@
@@

@@
@@

F

G/G ′ {N/P}~~
~~
~~
~~

k

where any structure on F/k of type N/P is of the form (K [N/P ])λ(G) .

This means that λ(G ) ≤ Perm(G/G ′) and N/P is embedded as a regular
subgroup which must be normalized by λ(G ).

Here too however, we can view G/G ′ and N/P as embedded in
Perm({X̃i}) as regular subgroups which normalize each other.

Timothy Kohl (Boston University) Short Exact Sequences of Hopf-Galois Extensions May 24, 2017 41 / 42



Thank you!
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